#### 2.4 High Data Rate MWD Mud Pulse Telemetry

Wallace R. Gardner (wgardner@halnet.com; 713-496-8118)

Halliburton
P.O. Box 15414
Houston, TX 77242

#### **Abstract**

The objective of this project is to build and test a research prototype of a 20-30 bits/second MWD mud-pulse telemetry system. At current telemetry rates of 1-3 bits/seconds, the driller must be very selective about what drilling data is transmitted. This lack of information makes is more difficult to optimize the drilling of wells. Halliburton has demonstrated that a 30 bits/second mud-pulse can be recovered in a 10,000 foot flow loop.

## HIGH DATA RATE MWD MUD PULSE TELEMETRY

U.S. Department of Energy's Natural Gas Conference Houston, Texas March 25, 1997



Wally Gardner
Halliburton Energy Services

## MUD PULSE TELEMETRY SYSTEM







### **CURRENT MWD TELEMETRY**

Mud Pulse (All Types)
 1-3 Bits/Sec

Electromagnetic (in 1-5 ohm-m)
 1 Bits/Sec

Acoustic
 Not Commercial

Hard-Wired Drill Pipe Not Commercial

Note: Data Compression, Not Included Above, Could Increase Data Rates an Additional 3x.





### PROJECT GOAL: 20-30 BITS/SEC

- Characterize Mud Pulse Transmission and Drilling Noise
- Develop Mud Pulsers for 20-30 Bits/Sec
- Develop Receivers and Advanced Signal Processing
- Demonstrate Working Pulser/Receiver System at 20-30 Bits/Sec





### **WORK PLAN**

- Phase 0 (Jun 94 Jan 95)
  - Halliburton Research of Concepts
  - Proved 30 bps is Possible
- Phase 1 (Jan 95 July 97)
  - Present GRI/Halliburton Joint Project
  - Build a Working 20-30 bps Pulser/Receiver
- Phase 2 (1998+)
  - Future GRI/Halliburton Joint Project
  - Develop into a Commercial System





### PHASE 1: CURRENT PROJECT

- Major Tasks
  - Refine Pulser Concept Options
  - Collect and Analyze Drilling Noise Data
  - Develop Receiver and Signal Processing
  - Demonstrate 20-30 bps Transmission
- Enabling Technologies
  - Low-Power High-Rate Pulser
  - Knowledge of Mud Transmission Channel
  - Advanced Digital Signal Processing
  - Flow Loop for System Testing





### WHERE WE ARE TODAY

- Two High-Rate, Low-Power Pulsers
- Acoustic Model of Mud Transmission Properties and Drilling Noise
- Tested Advanced Signal Processing Algorithms
- Transmitted and Received 30 bps in LSU and Houston Flow Loop, Processing Data from Memory
- Developing Real-Time Receiver & Algorithms
- Completed 11,000 ft Houston Flow Loop for System Testing
- Also Use 10,000 ft Flow Loop at LSU





### ADVANCED LWD TELEMETRY 30 BIT/SECOND DATA RATE TESTS







#### **HOUSTON FLOW LOOP**

- Located at Halliburton's Houston Technology Center (West Houston)
- 11,000 ft, World's Longest MWD Flow Loop
- 3.5-in. OD, 3.1-in. ID Coiled Tubing
- National Oil Well A-1100PT Triplex Pump
  - 700 gpm at 1300 psi
- Cost \$125,000
  - GRI Share \$22,500
- Construction Completed April 1996





### HOUSTON FLOW LOOP

Highway 6



1523'







# Halliburton Flow Loop Construction







# Halliburton Flow Loop Construction





### **Halliburton Flow Loop Construction**









## Halliburton Flow Loop Construction







### WHERE WE ARE GOING

- Test Alternate Pulsers
- Expect to Complete Research (Phase 1) in 1997
- Expect to Start Development (Phase 2) in 1998
- Flow Loop Testing of the Integrated System: Pulser/Receiver/Signal Processing Software





### <u>BENEFITS TO GAS PRODUCERS</u>

- Wireline Log Replacement
  - Benefit is Reduced Drilling Costs
- More Real-Time MWD Data
  - Better Pay Zone Steering, Drill More Productive Wells
  - Better Able to Drill Thin, Marginal Sands
  - Downhole Drilling Sensors Improve Drilling Decisions





### <u> WIRELINE LOGGING COSTS - 1995</u>

- Offshore
  - Logging Invoices \$ 450 million
  - Rig Time Cost \$ 200 million
- Land
  - Logging Invoices \$ 720 million
  - Rig Time Costs \$ 130 million
- LWD Can Eliminate the Rig Time Cost of WL Logs in Many Development Wells
- Wireline Replacement in 25% of Offshore Wells Will Save Oil Companies \$50 million/yr





### MORE REAL-TIME DATA

 WL Cable Telemetry Rates Kept Up With Acquisition Rates:

|      | <u>Acquired</u> | <b>Cable Telemetry</b> |
|------|-----------------|------------------------|
| 1970 | 50 bps          | 5 kbps                 |
| 1980 | 200 bps         | 80 kbps                |
| 1985 | 20 kbps         | 120 kbps               |
| 1995 | 100 kbps        | <b>750 kbps</b>        |
| 2000 | 350 kbps        | 1 mbps (est.)          |
|      |                 |                        |

- Telemetry is Already a Major Limiting Factor in Application of MWD Technology (1-3 bps)
- Currently Acquire Over 150 bps of MWD Data, Must Choose Which to Transmit



### BETTER PAY ZONE STEERING

- Data From Near/At-Bit Sensors Support the Steering of Boreholes into Thin Targets
  - Coupled with Horizontal Drilling, This Becomes an Enabling Technology
  - Makes Commercial Targets From Many BCF of Currently Marginal Gas Reservoirs
  - Higher Data Rates Provide More LWD Data, Better Decision Support at Rig
- Limited by Telemetry:
  - Imaging While Drilling
  - Magnetic Azimuth Corrections





### <u>IMPROVED DRILLING</u>

- At-Bit Sensors Enable Close Monitoring of the Drilling Process
  - Monitor Annulus Pressure
  - Detect Bit Stick & Whirl, Excessive Vibration
- Drilling 'Problems' Add 30% to Total Drilling Cost of Typical Well
  - Potential to Reduce These by Just 10% by Early Detection by BHA Sensors
  - Reduction of Total Drilling Costs by 3%





### <u>BENEFITS TO MWD INDUSTRY</u>

- Increased Use for Wireline Replacement
  - Every 5% Additional Replacement is an Additional \$ 50 million/yr Revenue
- Increased Use of Additional Sensors
  - Resistivity-GR-Directional Has Become Standard
  - Value of Data is Partly Lost if Only Stored Due to Inadequate Telemetry
  - Expect 50% Increase in Use of Porosity & Other Sensors, Additional \$ 25 million/yr
- Increased R&D Spending by MWD Industry
  - Increase of \$75 Million in Revenue Will Result in Additional \$5 Million/yr (6%)





### <u>Available Logging Technology - 1960</u>

- Single Induction Electric/Short Normal/SP
- Microlog
- Single Laterolog
- Density (uncompensated)
- Neutron (uncompensated)
- Sonic (uncompensated)
- Gamma Ray
- Caliper
- Dip Meter (3-arm)
- Percussion Cores

Total Data Acquired: 45 kb/1000 ft





### <u>Available Logging Technology - 1970</u>

- Dual Induction Laterolog/SP
- Microlog
- Single Laterolog
- Density (uncompensated)
- Neutron (uncompensated)
- Epithermal Neutron (uncompensated)
- Sonic (compensated)
- Gamma Ray
- Caliper
- Dip Meter (3-arm)
- Formation Tester (samples only)
- Percussion Sidewall Cores

Total Data Acquired: 51 kb/1000 ft





### <u>Available Logging Technology - 1980</u>

- Dual Induction Focussed Laterolog/SP
- Microlog
- Dual Laterolog/MSFL
- Density (with photoelectric measurement)
- Neutron (compensated)
- Epithermal Neutron (uncompensated)
- Sonic (compensated or long-spaced)
- Gamma Ray
- Dip Meter (4-arm)
- Dielectric Logging (high- and low-frequency)
- Formation Tester (samples and pressures)
- Percussion Sidewall Cores
- Primitive Borehole Televiewers

Total Data Acquired: 160 kb/1000 ft





### **Available Logging Technology - 1985**

- High Resolution Induction/Dual Induction Focussed Laterolog/SP
- Microlog
- Dual Laterolog/MSFL
- Density (with compensated photoelectric measurement)
- Neutron (compensated)
- Epithermal Neutron (compensated)
- Sonic (full waveform digital)
- Spectral Gamma Ray
- Dip Meter (6-arm)
- Electric Resistivity Imaging (1-pad)
- Dielectric Logging (high- and low-frequency)
- Formation Tester (samples and pressures)
- Rotary Sidewall Cores
- Percussion Sidewall Cores
- More Advanced Borehole Televiewers

Total Data Acquired: 3 Mb/1000 ft





### <u>Available Logging Technology - 1993</u>

- High Resolution Induction/Dual Induction Focussed Laterolog/SP
- Microlog
- Dual Laterolog/MSFL
- Density (with compensated photoelectric measurement)
- Neutron (compensated)
- Epithermal Neutron (compensated)
- Sonic (full waveform digital)
- Spectral Gamma Ray
- Dip Meter (6-arm)
- Electric Resistivity Imaging (6-pad)
- Dielectric Logging (high- and low-frequency)
- Formation Tester (samples and pressures)
- Rotary Sidewall Cores
- Percussion Sidewall Cores
- Digital Borehole Televiewers

Total Data Acquired: 60 Mb/1000 ft



